Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.558
Filter
2.
Sci Rep ; 13(1): 9161, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20245441

ABSTRACT

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Methyltransferases , Peptide Hydrolases , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Molecular Docking Simulation
3.
J Pharm Pharmacol ; 75(7): 898-909, 2023 Jul 05.
Article in English | MEDLINE | ID: covidwho-20245412

ABSTRACT

OBJECTIVES: Saikosaponins (SSs) constitute a class of medicinal monomers characterised by a triterpene tricyclic structure. Despite their potential therapeutic effects for various pathological conditions, the underlying mechanisms of their actions have not been systematically analysed. Here, we mainly review the important anti-inflammatory, anticancer, and antiviral mechanisms underlying SS actions. METHODS: Information from multiple scientific databases, such as PubMed, the Web of Science, and Google Scholar, was collected between 2018 and 2023. The search term used was saikosaponin. KEY FINDINGS: Numerous studies have shown that Saikosaponin A exerts anti-inflammatory effects by modulating cytokine and reactive oxygen species (ROS) production and lipid metabolism. Moreover, saikosaponin D exerts antitumor effects by inhibiting cell proliferation and inducing apoptosis and autophagy, and the antiviral mechanisms of SSs, especially against SARS-CoV-2, have been partially revealed. Interestingly, an increasing body of experimental evidence suggests that SSs show the potential for use as anti-addiction, anxiolytic, and antidepressant treatments, and therefore, the related molecular mechanisms warrant further study. CONCLUSIONS: An increasing amount of data have indicated diverse SS pharmacological properties, indicating crucial clues for future studies and the production of novel saikosaponin-based anti-inflammatory, efficacious anticancer, and anti-novel-coronavirus agents with improved efficacy and reduced toxicity.


Subject(s)
COVID-19 , Oleanolic Acid , Saponins , Humans , SARS-CoV-2 , Saponins/pharmacology , Saponins/therapeutic use , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology
4.
Biomacromolecules ; 24(7): 3115-3126, 2023 07 10.
Article in English | MEDLINE | ID: covidwho-20244921

ABSTRACT

In this work, we developed a library of sulfated glycomimetic polypeptides with a high sulfated degree (up to 99%) via a click reaction and sulfation modification, enabling control over the helicity, molecular weight, rigidity, and side-chain structure. Their potentials as the inhibitors of SARS-CoV-2 and common enterovirus were investigated, and the structure-activity relationship was explored in detail. The in vitro results revealed the crucial role of α-helical conformation and sulfated sugar since all the sulfated glycopolypeptides exhibited outperformed activity in suppressing SARS-CoV-2 infection with the inhibition efficiency up to 85%. Other structural properties, including the rigid chain structure and a moderate molecular weight, also contributed to blocking the viral entry into host cells. Among the sulfated glycopolypeptides, L60-SG-POB showed the highest inhibition efficiency with an IC50 of 0.71 µg/mL. Furthermore, these optimized sulfated glycopolypeptides were also capable of preventing enterovirus infection with the inhibition efficiency of up to 86%. This work opens new avenues for the development of synthetic polypeptides bearing sulfated sugars against SARS-CoV-2 and other viruses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Sulfates/chemistry , Peptides/pharmacology , Peptides/chemistry
5.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: covidwho-20244460

ABSTRACT

The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 µM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 µM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.


Subject(s)
COVID-19 , Peptidomimetics , Humans , Peptidomimetics/pharmacology , HEK293 Cells , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
6.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20244287

ABSTRACT

The coronavirus infectious disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has been spreading rapidly worldwide, creating a pandemic. This article describes the evaluation of the antiviral activity of nordihydroguaiaretic acid (NDGA), a molecule found in Creosote bush (Larrea tridentata) leaves, against SARS-CoV-2 in vitro. A 35 µM concentration of NDGA was not toxic to Vero cells and exhibited a remarkable inhibitory effect on the SARS-CoV-2 cytopathic effect, viral plaque formation, RNA replication, and expression of the SARS-CoV-2 spike glycoprotein. The 50% effective concentration for NDGA was as low as 16.97 µM. Our results show that NDGA could be a promising therapeutic candidate against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Masoprocol/pharmacology , Masoprocol/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Vero Cells
7.
J Comput Aided Mol Des ; 37(8): 339-355, 2023 08.
Article in English | MEDLINE | ID: covidwho-20244179

ABSTRACT

Identification of potential therapeutic candidates can be expedited by integrating computational modeling with domain aware machine learning (ML) models followed by experimental validation in an iterative manner. Generative deep learning models can generate thousands of new candidates, however, their physiochemical and biochemical properties are typically not fully optimized. Using our recently developed deep learning models and a scaffold as a starting point, we generated tens of thousands of compounds for SARS-CoV-2 Mpro that preserve the core scaffold. We utilized and implemented several computational tools such as structural alert and toxicity analysis, high throughput virtual screening, ML-based 3D quantitative structure-activity relationships, multi-parameter optimization, and graph neural networks on generated candidates to predict biological activity and binding affinity in advance. As a result of these combined computational endeavors, eight promising candidates were singled out and put through experimental testing using Native Mass Spectrometry and FRET-based functional assays. Two of the tested compounds with quinazoline-2-thiol and acetylpiperidine core moieties showed IC[Formula: see text] values in the low micromolar range: [Formula: see text] [Formula: see text]M and 3.41±0.0015 [Formula: see text]M, respectively. Molecular dynamics simulations further highlight that binding of these compounds results in allosteric modulations within the chain B and the interface domains of the Mpro. Our integrated approach provides a platform for data driven lead optimization with rapid characterization and experimental validation in a closed loop that could be applied to other potential protein targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
8.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20244127

ABSTRACT

Previous studies indicated that natural-based chalcones have significant inhibitory effects on the coronavirus enzymes 3CLpro and PLpro as well as modulation of some host-based antiviral targets (HBATs). In this study, a comprehensive computational and structural study was performed to investigate the affinity of our compound library consisting of 757 chalcone-based structures (CHA-1 to CHA-757) for inhibiting the 3CLpro and PLpro enzymes and against twelve selected host-based targets. Our results indicated that CHA-12 (VUF 4819) is the most potent and multi-target inhibitor in our chemical library over all viral and host-based targets. Correspondingly, CHA-384 and its congeners containing ureide moieties were found to be potent and selective 3CLpro inhibitors, and benzotriazole moiety in CHA-37 was found to be a main fragment for inhibiting the 3CLpro and PLpro. Surprisingly, our results indicate that the ureide and sulfonamide moieties are integral fragments for the optimum 3CLpro inhibition while occupying the S1 and S3 subsites, which is fully consistent with recent reports on the site-specific 3CLpro inhibitors. Finding the multi-target inhibitor CHA-12, previously reported as an LTD4 antagonist for the treatment of inflammatory pulmonary diseases, prompted us to suggest it as a concomitant agent for relieving respiratory symptoms and suppressing COVID-19 infection.


Subject(s)
COVID-19 , Chalcone , Chalcones , Humans , SARS-CoV-2 , Chalcones/pharmacology , Chalcone/pharmacology , Cysteine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
9.
Arch Virol ; 168(7): 177, 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20244071

ABSTRACT

Viral infections and diseases caused by viruses are worldwide problems. According to a WHO report, three to five million people are chronically infected with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) each year globally. Since some viruses mutate very quickly, developing antiviral drugs can be a daunting task. Moreover, currently used synthetic drugs are toxic and associated with side effects. Therefore, there is a need to search for alternative natural remedies that have low toxicity, a new mechanism of action, and no major side effects. Phyllanthus plants have traditionally been used to treat viral hepatitis and liver damage in many tropical and subtropical countries worldwide. In this review, we discuss the therapeutic potential of Phyllanthus spp. against HBV, HCV, HIV, herpes simplex virus, and SARS-CoV-2. The inferences from in vitro and in vivo studies and clinical trials validate the use of Phyllanthus in antiviral remedies.


Subject(s)
COVID-19 , HIV Infections , Hepatitis C , Phyllanthus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Hepacivirus , Hepatitis B virus
10.
Viruses ; 15(5)2023 04 30.
Article in English | MEDLINE | ID: covidwho-20243806

ABSTRACT

Scientific advances have led to the development and production of numerous vaccines and antiviral drugs, but viruses, including re-emerging and emerging viruses, such as SARS-CoV-2, remain a major threat to human health. Many antiviral agents are rarely used in clinical treatment, however, because of their inefficacy and resistance. The toxicity of natural products may be lower, and some natural products have multiple targets, which means less resistance. Therefore, natural products may be an effective means to solve virus infection in the future. New techniques and ideas are currently being developed for the design and screening of antiviral drugs thanks to recent revelations about virus replication mechanisms and the advancement of molecular docking technology. This review will summarize recently discovered antiviral drugs, mechanisms of action, and screening and design strategies for novel antiviral agents.


Subject(s)
Biological Products , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Molecular Docking Simulation , SARS-CoV-2 , Virus Replication
11.
Front Immunol ; 14: 1172000, 2023.
Article in English | MEDLINE | ID: covidwho-20243355

ABSTRACT

Type I interferons (IFNs-α/ß) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.


Subject(s)
Interferon Type I , RNA Viruses , Vaccines , Animals , Immune Evasion , Antiviral Agents/pharmacology
12.
Vopr Virusol ; 68(2): 152-160, 2023 05 18.
Article in Russian | MEDLINE | ID: covidwho-20242884

ABSTRACT

INTRODUCTION: The COVID-19 pandemic combined with seasonal epidemics of respiratory viral diseases requires targeted antiviral prophylaxis with restorative and immunostimulant drugs. The compounds of natural origin are low-toxic, but active against several viruses at the same time. One of the most famous compounds is Inonotus obliquus aqueous extract. The fruit body of basidial fungus I. obliquus is called Chaga mushroom. The aim of the work ‒ was to study the antiviral activity of I. obliquus aqueous extract against the SARS-CoV-2 virus in vivo. MATERIALS AND METHODS: Antiviral activity of I. obliquus aqueous extract sample (#20-17) was analyzed against strain of SARS-CoV-2 Omicron ВА.5.2 virus. The experiments were carried out in BALB/c inbred mice. The SARS-CoV-2 viral load was measured using quantitative real-time PCR combined with reverse transcription. The severity of lung tissue damage was assessed by histological methods. RESULTS: The peak values of the viral load in murine lung tissues were determined 72 hours after intranasal inoculation at dose of 2,85 lg TCID50. The quantitative real-time PCR testing has shown a significant decrease in the viral load compared to the control group by 4,65 lg copies/ml and 5,72 lg copies/ml in the lung tissue and nasal cavity samples, respectively. Histological methods revealed that the decrease in the number and frequency of observed pathomorphological changes in murine lung tissues depended on the introduction of the compound under study. CONCLUSION: The results obtained indicate the possibility of using basidial fungus Inonotus obliquus aqueous extract as a preventive agent against circulating variants of SARS-CoV-2 virus.


Subject(s)
Basidiomycota , COVID-19 , Coronaviridae , Severe acute respiratory syndrome-related coronavirus , Humans , Mice , Animals , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice, Inbred BALB C , Pandemics , Fungi
13.
Sci Adv ; 9(22): eadf0211, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-20242861

ABSTRACT

The emergence of a series of SARS-CoV-2 variants has necessitated the search for broad-spectrum antiviral targets. The aryl hydrocarbon receptor (AhR) senses tryptophan metabolites and is an immune regulator. However, the role of AhR in SARS-CoV-2 infection and whether AhR can be used as the target of antiviral therapy against SARS-CoV-2 and its variants are yet unclear. Here, we show that infection with SARS-CoV-2 activates AhR signaling and facilitates viral replication by interfering with IFN-I-driven antiviral immunity and up-regulating ACE2 receptor expression. The pharmacological AhR blockade or AhR knockout reduces SARS-CoV-2 and its variants' replication in vitro. Drug targeting of AhR with AhR antagonists markedly reduced SARS-CoV-2 and its variants' replication in vivo and ameliorated lung inflammation caused by SARS-CoV-2 infection in hamsters. Overall, AhR was a SARS-CoV-2 proviral host factor and a candidate host-directed broad-spectrum target for antiviral therapy against SARS-CoV-2 and its variants, including Delta and Omicron, and potentially other variants in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Proviruses/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2/metabolism
14.
EMBO Mol Med ; 15(7): e17146, 2023 07 10.
Article in English | MEDLINE | ID: covidwho-20242793

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2020 highlighted the need for rapid, widespread responses against infectious disease. One such innovation uses CRISPR-Cas13 technology to directly target and cleave viral RNA, thereby inhibiting replication. Due to their programmability, Cas13-based antiviral therapies can be rapidly deployed to target emerging viruses, in comparison with traditional therapeutic development that takes at least 12-18 months, and often many years. Moreover, similar to the programmability of mRNA vaccines, Cas13 antivirals can be developed to target mutations as the virus evolves.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/genetics , RNA, Viral
15.
Sci Rep ; 13(1): 9204, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20242518

ABSTRACT

The recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning algorithm on all protein-compound complexes available in the protein database (PDB) to identify Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up evaluation, we used publicly available data published almost two years after the screen to validate our results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and can furthermore show that predicted compounds do cover scaffolds that are yet not associated with Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope that we will be better prepared for future pandemics and that drug development will become more efficient in the upcoming years.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Viral Nonstructural Proteins/metabolism , Drug Discovery/methods
16.
Viruses ; 15(5)2023 05 16.
Article in English | MEDLINE | ID: covidwho-20235667

ABSTRACT

The host targeting antiviral, UV-4B, and the RNA polymerase inhibitor, molnupiravir, are two orally available, broad-spectrum antivirals that have demonstrated potent activity against SARS-CoV-2 as monotherapy. In this work, we evaluated the effectiveness of UV-4B and EIDD-1931 (molnupiravir's main circulating metabolite) combination regimens against the SARS-CoV-2 beta, delta, and omicron BA.2 variants in a human lung cell line. Infected ACE2 transfected A549 (ACE2-A549) cells were treated with UV-4B and EIDD-1931 both as monotherapy and in combination. Viral supernatant was sampled on day three when viral titers peaked in the no-treatment control arm, and levels of infectious virus were measured by plaque assay. The drug-drug effect interaction between UV-4B and EIDD-1931 was also defined using the Greco Universal Response Surface Approach (URSA) model. Antiviral evaluations demonstrated that treatment with UV-4B plus EIDD-1931 enhanced antiviral activity against all three variants relative to monotherapy. These results were in accordance with those obtained from the Greco model, as these identified the interaction between UV-4B and EIDD-1931 as additive against the beta and omicron variants and synergistic against the delta variant. Our findings highlight the anti-SARS-CoV-2 potential of UV-4B and EIDD-1931 combination regimens, and present combination therapy as a promising therapeutic strategy against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology
17.
Mini Rev Med Chem ; 23(7): 821-851, 2023.
Article in English | MEDLINE | ID: covidwho-20235417

ABSTRACT

Viruses are still the most prevalent infectious pathogens on a worldwide scale, with many of them causing life-threatening illnesses in humans. Influenza viruses, because of their significant morbidity and mortality, continue to pose a major threat to human health. According to WHO statistics, seasonal influenza virus epidemics are predicted to cause over 2 million severe illness cases with high death rates yearly. The whole world has been suffering from the COVID-19 epidemic for two years and is still suffering so far, and the deaths from this virus have exceeded three million cases. Because the great majority of viral infections do not have a specific medication or vaccination, discovering novel medicines remains a vital task. This review covers reports in the patent literature from 1980 to the end of 2021 on the antiviral activities of pyrimidine moieties. The patent database, SciFinder, was used to locate patent applications. A large variety of pyrimidine molecules have been produced and tested for antiviral activity over the last decade. These molecules were reported to inhibit a wide range of viruses, including influenza virus, respiratory syncytial virus, rhinovirus, dengue virus, herpes virus, hepatitis B and C, and human immunodeficiency virus. The cytotoxicity of the developed pyrimidine derivatives was tested in almost all reported studies and the selectivity index was calculated to show the selectivity and safety of such molecules. From the remarkable activity of pyrimidine compounds as antivirals for several dangerous viruses, we expect that these derivatives will be used as potent drugs in the very near future.


Subject(s)
COVID-19 , Influenza, Human , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Pyrimidines/pharmacology , Pyrimidines/therapeutic use
18.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20235368

ABSTRACT

The prediction of a ligand potency to inhibit SARS-CoV-2 main protease (M-pro) would be a highly helpful addition to a virtual screening process. The most potent compounds might then be the focus of further efforts to experimentally validate their potency and improve them. A computational method to predict drug potency, which is based on three main steps, is defined: (1) defining the drug and protein in only one 3D structure; (2) applying graph autoencoder techniques with the aim of generating a latent vector; and (3) using a classical fitting model to the latent vector to predict the potency of the drug. Experiments in a database of 160 drug-M-pro pairs, from which the pIC50 is known, show the ability of our method to predict their drug potency with high accuracy. Moreover, the time spent to compute the pIC50 of the whole database is only some seconds, using a current personal computer. Thus, it can be concluded that a computational tool that predicts, with high reliability, the pIC50 in a cheap and fast way is achieved. This tool, which can be used to prioritize which virtual screening hits, will be further examined in vitro.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Reproducibility of Results , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
19.
Viruses ; 15(5)2023 04 27.
Article in English | MEDLINE | ID: covidwho-20242499

ABSTRACT

Early detection and characterization of new variants and their impacts enable improved genomic surveillance. This study aims to evaluate the subvariant distribution of Omicron strains isolated from Turkish cases to determine the rate of antiviral resistance of RdRp and 3CLpro inhibitors. The Stanford University Coronavirus Antiviral & Resistance Database online tool was used for variant analyses of the strains uploaded to GISAID as Omicron (n = 20.959) between January 2021 and February,2023. Out of 288 different Omicron subvariants, B.1, BA.1, BA.2, BA.4, BE.1, BF.1, BM.1, BN.1, BQ.1, CK.1, CL.1, and XBB.1 were the main determined subvariants, and BA.1 (34.7%), BA.2 (30.8%), and BA.5 (23.6%) were reported most frequently. RdRp and 3CLPro-related resistance mutations were determined in n = 150, 0.72% sequences, while the rates of resistance against RdRp and 3CLpro inhibitors were reported at 0.1% and 0.6%, respectively. Mutations that were previously associated with a reduced susceptibility to remdesivir, nirmatrelvir/r, and ensitrelvir were most frequently detected in BA.2 (51.3%). The mutations detected at the highest rate were A449A/D/G/V (10.5%), T21I (10%), and L50L/F/I/V (6%). Our findings suggest that continuous monitoring of variants, due to the diversity of Omicron lineages, is necessary for global risk assessment. Although drug-resistant mutations do not pose a threat, the tracking of drug mutations will be necessary due to variant heterogenicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Molecular Epidemiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase
20.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: covidwho-20242253

ABSTRACT

Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.


Subject(s)
COVID-19 , Interferon Type I , Animals , Interferons/genetics , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon Type I/genetics , Cytokines , Immunity, Innate , Immune Evasion
SELECTION OF CITATIONS
SEARCH DETAIL